Forgot bit locker pin, forgot bit locker recovery key, 5 Easy ways to fix

Image
 Did you forgot your bit locker pin and recovery key. Try these methods, I hop it help you. 1. When you see this screen, Press "Esc" key in your keyboard for more recovery option. It will say preparing BitLocker recovery, You will see the screen bellow in few minute. Here we will click on "Skip the drive", You will see the screen bellow. Here you need to Turn off your PC, and then enter the BIOS of your PC. In order to enter BIOS, check for your PC brand and model and search on google, how to enter BIOS for your particular brand and model of your PC. Search for "Secure Boot" Enable it and check it, if it works for you. If it do not work, come back to same place and Disable "Secure Boot" and try again, see if it work for you. 2. If the above method do not work for you, try resetting your PC, You can choose any of the two option for resetting your PC, "Keep my files" or "Remove everything" whichever works for you. 3. If the abov...

What is Python Dictionaries and how to use it?

In Python, a dictionary is a collection of key-value pairs, where each key is associated with a specific value. Dictionaries are mutable, meaning you can change their contents (add, modify, or remove key-value pairs) after creation. They are also unordered, so the order in which items are added to a dictionary is not guaranteed to be the order in which they are stored.

### Creating Dictionaries

You can create a dictionary by placing a comma-separated list of key-value pairs inside curly braces `{}`, with a colon `:` separating each key from its corresponding value. You can also use the `dict()` function.

```python

# Creating a dictionary with curly braces

person = {

    "name": "John",

    "age": 30,

    "city": "New York"

}

# Creating a dictionary using the dict() function

person = dict(name="John", age=30, city="New York")

# Creating an empty dictionary

empty_dict = {}

```

### Accessing Values

You can access the value associated with a specific key by using square brackets `[]` or the `get()` method.

```python

# Using square brackets

print(person["name"])  # Output: John

# Using the get() method

print(person.get("age"))  # Output: 30

```

If you try to access a key that does not exist using square brackets, Python will raise a `KeyError`. However, using the `get()` method will return `None` (or a specified default value) if the key is not found.

```python

# Using square brackets (raises KeyError)

# print(person["height"])  # KeyError: 'height'

# Using get() (returns None)

print(person.get("height"))  # Output: None

# Using get() with a default value

print(person.get("height", 180))  # Output: 180

```

### Modifying Dictionaries

You can modify a dictionary by adding, updating, or removing key-value pairs.

- **Adding or Updating**: Assign a value to a key using square brackets. If the key exists, its value will be updated; if not, a new key-value pair will be added.

  ```python

  # Adding a new key-value pair

  person["height"] = 180

  print(person)  # Output: {'name': 'John', 'age': 30, 'city': 'New York', 'height': 180}

  # Updating an existing key-value pair

  person["age"] = 31

  print(person)  # Output: {'name': 'John', 'age': 31, 'city': 'New York', 'height': 180}

  ```

- **Removing**: You can remove a key-value pair using the `del` statement, the `pop()` method, or the `popitem()` method.

  ```python

  # Using del

  del person["city"]

  print(person)  # Output: {'name': 'John', 'age': 31, 'height': 180}

  # Using pop() (returns the value of the removed key)

  age = person.pop("age")

  print(age)  # Output: 31

  print(person)  # Output: {'name': 'John', 'height': 180}

  # Using popitem() (removes and returns the last inserted key-value pair)

  last_item = person.popitem()

  print(last_item)  # Output: ('height', 180)

  print(person)  # Output: {'name': 'John'}

  ```

- **Clearing**: You can remove all key-value pairs using the `clear()` method.

  ```python

  person.clear()

  print(person)  # Output: {}

  ```

### Dictionary Methods

Dictionaries have several built-in methods that allow you to perform various operations:

- **`keys()`**: Returns a view object containing all the keys in the dictionary.

  ```python

  person = {"name": "John", "age": 31, "city": "New York"}

  keys = person.keys()

  print(keys)  # Output: dict_keys(['name', 'age', 'city'])

  ```

- **`values()`**: Returns a view object containing all the values in the dictionary.

  ```python

  values = person.values()

  print(values)  # Output: dict_values(['John', 31, 'New York'])

  ```

- **`items()`**: Returns a view object containing all the key-value pairs in the dictionary as tuples.

  ```python

  items = person.items()

  print(items)  # Output: dict_items([('name', 'John'), ('age', 31), ('city', 'New York')])

  ```

- **`update()`**: Updates the dictionary with key-value pairs from another dictionary or iterable of key-value pairs.

  ```python

  person.update({"age": 32, "height": 180})

  print(person)  # Output: {'name': 'John', 'age': 32, 'city': 'New York', 'height': 180}

  ```

- **`copy()`**: Returns a shallow copy of the dictionary.

  ```python

  new_person = person.copy()

  print(new_person)  # Output: {'name': 'John', 'age': 32, 'city': 'New York', 'height': 180}

  ```

### Dictionary Comprehensions

Dictionary comprehensions provide a concise way to create dictionaries. It’s similar to list comprehensions but produces a dictionary.

```python

# Example: Creating a dictionary of squares

squares = {x: x**2 for x in range(1, 6)}

print(squares)  # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

```

### Nested Dictionaries

Dictionaries can contain other dictionaries, creating a nested dictionary.

```python

nested_dict = {

    "person1": {"name": "John", "age": 30},

    "person2": {"name": "Jane", "age": 25}

}

print(nested_dict["person1"]["name"])  # Output: John

print(nested_dict["person2"]["age"])   # Output: 25

```

### When to Use Dictionaries

Dictionaries are ideal when you need to associate keys with values and want to efficiently look up, add, or modify these associations. They are commonly used for:

- **Storing configurations or settings** where each key is a setting name and its value is the setting's value.

- **Mapping unique identifiers (like user IDs) to data** (like user information).

- **Counting occurrences** of items (by storing the item as the key and the count as the value).

### Conclusion

Python dictionaries are a powerful and flexible way to store and manage data. They allow you to map keys to values, making it easy to look up, modify, and manage associations between data elements. Understanding how to use dictionaries effectively is essential for writing efficient and organized Python code.

Popular posts from this blog

Top international payment gateway transaction fee comparison (2024)

What is Python Syntax and how to use?

How to Manage Boot Configuration of Windows using CMD